

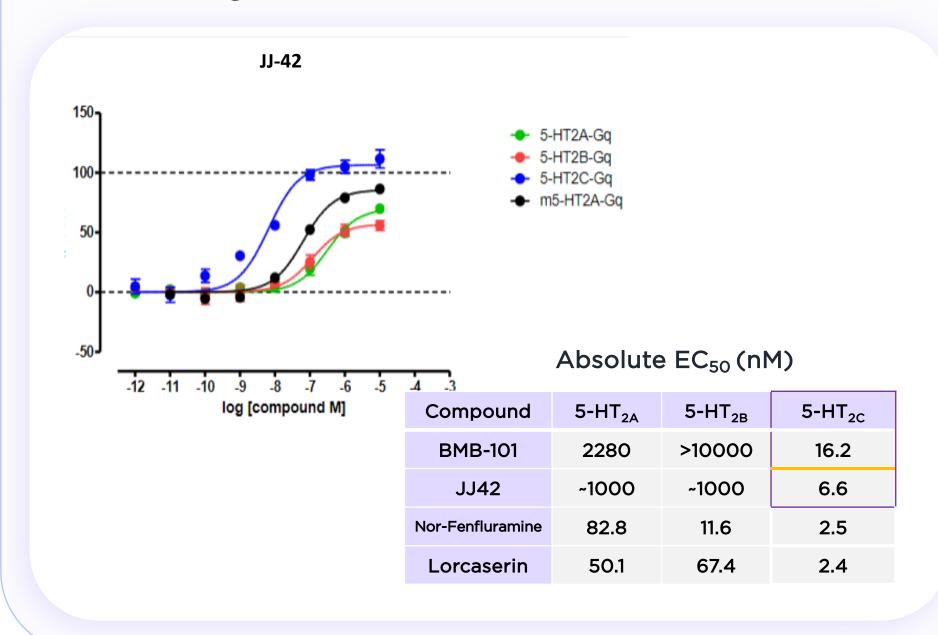
Selective 5-HT_{2C} Agonists for the Treatment of **Rare Epileptic Disorders**

Bright Minds Biosciences, Inc. New York, NY, USA

alex@brightmindsbio.com https://brightmindsbio.com/

Introduction

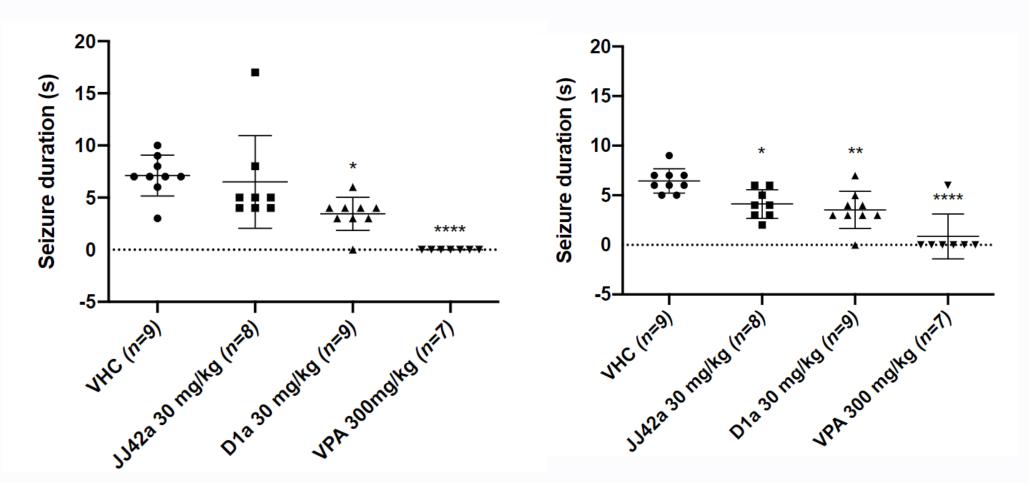
The 5-HT2C receptor, a subtype of the serotonin receptor family, plays a pivotal role in various neurological and psychiatric processes, making its agonists promising candidates for therapeutic interventions. Recent efforts have focused on developing 5-HT2C agonists for developmental and epileptic encephalopathies (DEEs). Fenfluramine, a non-selective 5-HT2C agonist, has been approved for the treatment of Dravet Syndrome and Lennox-Gastaut Syndrome, demonstrating significant efficacy in reducing seizure frequency. Fenfluramine is approved with a Black–Box–Warning and a hard dose cap due to 5HT2b mediated cardiovascular risks, necessitating regular echocardiograms during treatment.


JJ42 and BMB-101 are novel, highly selective 5-HT2C receptor agonists with minimal activity at 5-HT2A and 5-HT2B receptors, reducing liabilities linked with psychedelic effects and cardiotoxicity. Both compounds selectively activate G-protein pathways without beta-arrestin activation, making them promising candidates for chronic treatment of epileptic disorders.

Methods

BMB-101, 5-HT2C agonists developed by Bright Minds]]42 and development, Biosciences underwent comprehensive preclinical including pharmacological profiling, receptor selectivity assays, and efficacy evaluations in seizure models. NIH, Epilepsy Therapy Screening Program (ETSP) screening was completed for JJ42 compound.

Selective 5-HT_{2C} receptor agonists


BMB-101 and JJ-42 high selectivity for the 5-HT2C receptor and minimal off-target activity suggest a reduced risk of adverse effects compared to less selective agonists.

*A. VASILKEVICH¹. A. LOVERA. J. DUAN¹. M. A. SMITH^{1,} J. MCCORVY². J. T. PEDERSEN¹: ¹Bright Minds Biosci., New York, NY; ²Cell Biology, Neurobio. & Anat., Med. Col. of Wisconsin, Milwaukee, WI;

Preclinical models

In the mouse 6-Hz (44 mA) psychomotor seizure model BMB-101 (D1a) lowered the seizure duration at 30 min (left) and 1 h (right) after injection while JJ42 lowers the seizure duration after 1 h. Valproate was used as positive control. In house model.

Behavioral antiseizure analysis of compounds JJ42a and D1a in the mouse 6-Hz (44mA) psychomotor seizure model 30 minutes (left) or 1 hour (right) after treatment. Drug-resistant psychomotor seizures were induced 30 min/1 h after i.p. injection of vehicle (VHC), positive control valproate (VPA), compound JJ42a and compound D1a, Mean seizure durations (± SD) are depicted. VHC (n=9)JJ42a 30 mg/kg (n=8)D1a 30 mg/kg (n=9)VPA 300mg/kg (n=7)***

In the Epilepsy Therapy Screening Program (ETSP), JJ42 was tested IP in the rat maximal electroshock seizure model (MES). In the initial screening assay, 30 and 50mg/kg of the test drug provided significant protection against MESinduced generalized seizures in rats. Toxicity was not observed at any doses.

JJ42 at concentration s 3, 10, and 30 mg/kg did not cause any motor impairments on rotarod, and no mortality at 72 hours was observed.

JJ42 was further tested in mice and rat MES model and produced dose-dependent activity with ED50 of 23.4 mg/kg and 9.86 mg/kg correspondingly. Note that JJ42 has lower 5-HT2C activity in rodent receptors compared to human.

MES model – Antiseizure activity in rats (IP administration) at 0.5h timepoint				
Dose	Protection (N=8)			
5 mg/kg	1/8			
15 mg/kg	6/8			
30 mg/kg	8/8			

MES model – Antiseizure activity in rats (IP
administration)

administration)					
Dose	Test	0.25	1		
		Protected/total			
10 mg/kg	MES	0/4	0/4		
30 mg/kg	MES	3/4	0/4		
50 mg/kg	MES	4/4	4/4		
	N=4 for each dose				
10 mg/kg	тох	0	0		
30 mg/kg	тох	0	0		
50 mg/kg	тох	0	0		

MES model – Antiseizure activity in male mice	(IP
administration) at 0.5h timepoint	

Dose	Tolerability (N=8)	Protection (N=8)
15 mg/kg	100%	1/8
22.5 mg/kg	100%	3/8
30 mg/kg	100%	7/8
45 mg/kg	100%	8/8

- Side effects at top dose (2–3x of predicted therapeutic dose) as expected for the CNS drug acting at 5-HT receptors.

- JJ42 and BMB-101 are potent and selective agonists of the 5HT2c receptor Both compounds produce dose-dependent activity in several preclinical seizure models as demonstrated by ETSP studies and BMB in house assays BMB-101 was selected as a lead candidate, that completed Phase 1

SnF conference 2024, October 5-9, Chicago

Satellite NINDS torum

BMB-101 Phase 1 trial

BMB-101 has successfully completed Phase 1 studies.

Safety:

• Favorable safety & tolerability in Phase 1. All side effects were transient, no severe adverse events observed. No side-effects observed before top dose was reached.

Target engagement:

- Transient dose-dependent prolactin release
- Central target engagement by qEEG and Potential for improved cognitive performance (increase in gamma power)

Favorable PK:

• Dose proportionality observed in SAD and MAD study. No significant food effects observed

These phase 1 results support BMB-101 further investigation in patients with epilepsy. With its high selectivity and safety profile, BMB-101 is a promising 5-HT2c agonist for the treatment of seizures in Developmental and epileptic encephalopathy (DEEs) and certain forms of generalized epilepsies. Phase II studies with BMB-101 in DEE and Absence Epilepsy will be initiated in Q4 2024.

Conclusions

- clinical trials and is progressing to Phase 2 clinical studies in absence subgroups of absence epilepsies and DEEs.

Acknowledgements

The preclinical research work on JJ42 was completed by the NIH, Epilepsy Treatment Screening Program. Additional preclinical and clinical research on BMB-101 is done by Bright Minds Biosciences inc.

The compounds were discovered by Alan Kozikowski group in UIC and Bryan Roth groups and licensed by Bright Minds Biosciences